

高層建築的二次新生

B+H

我們打造有生命的建築™

多倫多·温哥華·卡爾加里·西雅圖 上海·北京·香港·新加坡 胡志明市·德里·多哈·迪拜

目錄

iv 簡介

1 第一章: 談建築二次新生

2 大都市因建築老化而面臨的挑戰

8 加拿大與海外可持續性建築和翻新情况現狀

15 第二章:項目案例分析

16 加拿大第一廣場整新

30 多倫多道明銀行中心二次新生

封面圖:加拿大多倫多道明銀行中心 (圖片來源-封面/對頁:Tom Arban)

簡介

"建築是影響氣候變化的最主 要根源。許多人之所以對于這 一現實表現出驚訝, 這緣干大家 都把關注的焦點放在了交通排 放上。事實上,建築必須爲美國 2009年度二氧化碳排放量的近 一半(占46.9%)買單。相形之 下,交通只占33.5%,而工業僅 占19.6%。"

Edward Mazria, Architecture 2030.

每個擁有美麗天際綫的城市,無論是在北美、歐洲、還是亞 洲,在接下來的20年里,都將面臨着嚴峻挑戰。這些城市在 竭盡全力應對如何减少温室氣體排放的同時, 高層建築的構件 又將到達生命周期的末端。此類建築的數量十分驚人,僅新加 坡、香港、紐約和多倫多4地就有將近20,000 建築層數12層 以上的建築。1

當新加坡和紐約以擁有可追述到30年代的標志性高層建築爲 傲,反觀歐洲和北美,其建築大多始建于60或70年代,而亞 洲更是建于80和90年代。目前的狀况是: 在全球範圍內, 有 一定數量的高層建築已達30或40歲高齡,正處于其系統和構 件都需要更替的時間段。

這些建築不僅因歲月侵蝕而顯老舊, 更因其設計于能量消耗 低, 還遠沒有温室氣體排放這一概念的時代。如今, 建築已成 爲温室氣體排放的主要來源,翻新現有建築已成爲對抗全球變 暖的最重要的有效戰略之一。

賦予全球高層建築第二次生命的時代已經到來。

本書旨在說明當城市建築老化,而政府與社會大眾又都需要可持 續發展社區環境時,城市所面臨的挑戰。同時說明翻新如何以高 效成本投入,打造節能建築,並賦予其第二次生命的。

B+H 高層建築團隊

www.emporis.com/application/?nav=skylineranking&lng=3

已老化的建築系統與能耗猛增;温室氣體排放和競爭激烈的 房地產市場的雙重壓力,這些都是驅動全球每個主要城市翻 新建築的動力。

所有建築都需要維護。雖建築系統與耐久性程度不盡相同,但建 築的使用壽命都會由于維護不周而大幅縮短。通常高層建築的主 要設備系統及構件在需要更替之前,可正常運作30至40年。歐洲 及北美的高層建築大多都始建于60或70年代, 而亞洲則多建于 80與90年代。如果那些業主想在當下競爭激烈的房地產市場留 付租戶的話,就不得不正視他們的建築正面臨,或即將面臨翻新 這一問題。

此外,這些建築大多設計干公眾還未對温室氣體排放和全球變暖 問題有所關注的時代。如今,建築已成爲美國温室氣體排放的主 要來源,2占一所城市排放量的78%。3 隨着温室氣體這一問題越 發嚴峻,世界各國政府紛紛出台了激勵減排政策及管理機制。這 意味着業主們必須改造更新現有建築體系以符合新的標准要求, 通過降低能耗成本,以吸引具有創新意識、且具社會責任感的企 業爲租戶打造綠色空間。

為何選擇翻新而不是建造新的建築?

除非有嚴重的結構問題,否則一般不會輕易選擇推倒重來。不 但經濟上不合理, 而且耗時耗力。此外, 許多高樓乃地標性建 築,不能輕易說毀就毀。重建同樣耗時耗財,新建建築每平方 英尺的造價一般都高于250加幣,且歷時至少4年之久。

考慮到一般建築的結構體都按歷時百年設計,翻新無疑是賦予 建築第二次生命的最佳途徑, 目成本僅爲新建建築的一半。圍 護結構的飾面處理一般僅需新建建築成本的15%至20%,每平 方英尺甚至不足100加幣。

常見的建築翻新區域有哪些呢?

建築外立面、機電系統、電梯、自動扶梯以及建築室內部分是 常見的翻新區域。

大樓圍護結構:

圍護結構是建築的最外層, 保護建築免收周圍環境的侵 害。4典型的維護結構翻新包括:

將單層玻璃面板換成雙層 更換建築"表皮層"或飾面層 更換外立面表層內的保温層 在原有圍護結構外覆蓋一層新表皮, 甚至可以重新設計和 包裝外立面。

機雷系統.

更换管道系統是解决水資源消耗最有效的解决方式之一。 更新電氣系統, 既使建築整體節能, 又滿足不同租戶的用電 需求。

傳送運輸系統:

電梯、自動扶梯以及其他傳送運輸系統的升級可以爲和戶提 更高級別的舒適度及安全度。

保持電梯系統的良好維護有助于保障租戶及訪客的通行。

室内:

公共區及零售店鋪區域的整修使商用物業保持A級標准。

^{2.} 華盛頓郵報 - http://www.washingtonpost.com/wp-dyn/content/ article/2008/07/11/AR2008071101581.html

^{3.} 規划紐約案 (PlaNYC) 紐約温室氣體核算體系

^{4.} 國家建築科學研究所 (National Institute of Building Sciences) , http://www. wbdg.org/design/env_wall.php

翻新動因

促使更新與翻新需求的最大動因來源于急速上漲的能源消耗, 相關法規要求减少温室氣體排放量, 競爭激烈的房地產市場以 及臨近建築壽命周期、需要大範圍維修的老舊建築。

運營效率 / 低運營成本

诵渦更換或翻新建築的外墻結構以及升級機雷系統,可以實現 節能的目的。節能的程度不盡相同,這取决于建築所處的地理 位置及建築本身是否有隔熱層。典型的美國商業建築翻新后可 實現10%至50%的節能。5

競爭性動因

建築運營狀態良好是吸引並留住租戶的首要因素。建築必須得 到很好的維護,才能維持高標准運營,從而確保其在租賃市場 的地位, 獲取高額租金, 同時吸引世界領先企業入駐。重視創 新月具計會責任感的企業逐漸青睞綠色建築, 因達到此標准的 建築行行能贏得不菲的租金。此外, 翻新的另一動因在于爲租 戶創造舒適環境。

危機動因

减少外墻板掉落的安全隱患(及與之相關聯的公關與經濟成 本) 是推動高樓翻新的另一因素。故障既可能會災難性爆發, 也可能會日常頻發,包括:

脱落的建築構件, 比如檐口板和外飾面板 電梯及自動扶梯系統故障 老化月故障連連的電綫及水管道

業主也無法在盡職調查中探測到建築故障, 因爲高層建築的高 度本身就極具挑戰性。

環境與政策動因

商業建築會消耗美國能源產量的20%,是温室氣體排放的主要來 源。6温室氣體排放問題越來越受到業主的關注,加上新的環境 政策與急速上升的能源成本,這些都催生了建築翻新的理念。

越來越多的政府部門與組織引進激勵機制,促進業主實施可持續 翻新和改造外圍護。經濟刺激日漸普及顯效,比如新加坡建設局 針對現有建築推出了價值1億的綠色建築認證項目(Green Mark) ,鼓勵業主對其建築進行翻新。此外,美國也推出了類似認證項 日, 例如能源服務協議和商業地產清潔能源財產評估。

建築翻新所面臨的挑戰

上圖: 當下紐約全景

運作挑戰

翻新高層建築所面臨的最大挑戰在干進行翻新的同時,建築本身 仍處干運營狀態。因此,爲一幢50層高的建築更換玻璃面板絕對 不是個簡單的工程。在第一加拿大廣場與多倫多道明中心案例分 析時,建築師就提出翻新必須采取最新手段,將對租戶的干擾降 低到最小程度。同時要創造性地解决施工中出現的疑難雜症,因 爲每棟高層建築的建造方式與外立面都不盡相同。

資金挑戰

當建築業主與管理層着手開始翻新項目時,都會遇到這樣或那樣 的財政與技术挑戰。無論是外立面改造,還是機電系統與電梯的 翻新與升級。以品牌挑戰開始,這通常關系到建築能否維持其在 當地房地產市場中的地位與定性評級。建築業主同樣面對財政挑 戰,建築的投資成本與生命周期成本並非簡單關聯,當利息較低 的時候, 想要從銀行獲得貸款支持翻新項目亦非易事。麥格勞希 爾集團 (McGraw Hill) 最近的研究表明,綠色翻新的資金主要 來源于運營利潤。許多業主也會動用經營利潤之外的資金, 41% 的業主會選擇因翻新改建而帶來的節能效為,而14%的業主會選 擇合同能源管理融資的方式。

業主利用與合同能源管理公司(ESCO)合作而創造的節能效益, 即合同能源管理公司承擔翻新的早期成本,之后將收取小比例的 節能效為。不足20%的業主表示他們利用的是自銀行借貸而來的 資金來運營其綠色翻新改建項目。7合同能源管理公司幫助應對了 部分建築能源節約的挑戰,主要在干其爲前期投資注入了資金。 一家合同能源管理公司提供設計、施工及建築能效升級的資金來 源,同時協助主要系統的維護與運營。這都有利干業主在參與此 類項目時,能盡量規避風險。作爲回報,根據與業主簽訂的合同能 源管理合同條款,業主需在合同期限內,支付合同能源管理公司— 定比例的節能收益。這個期限通常爲10至15年。合同期滿,業主 則將獲得全盤節能收益。8

根據建築類別的不同,融資方式也不盡相同。麥格勞希爾集團 (McGraw Hill) 研究表明翻新的資金通常來源于現金流的運 作。以名聲響亮的甲級寫字樓(誦常業主為大型開發商或是政府 部門所有)爲例,資金絕對算不上是問題,反而競爭壓力、市場份 額、和戶安全與舒適度等,都催生了翻新工程的實施。

使用年限較長的丙級寫字樓和居住樓則會引發計會、財政及環

^{7 &}amp; 8. 綠色建築翻新與改建: 急速擴張的市場從現有建築中尋求良機, 智能市場報告, 智能報告麥格勞希爾建築集團,第11頁

從美國新澤西州霍博肯港眺望的紐約市全景 (http://en.wikipedia.org/wiki/File:NYC_Panorama_edit2.jpg)

境諸多方面的挑戰, 而且此類問題並非輕易可以得到解决。資 金對于丙級寫字樓而言却是個大問題,無論其是私有或公有。 舉例說,使用已有30至40年的,且年久失修的社會公共住房 與公寓樓,都迫切需要維修。這對業主和住戶而言,無疑都是 一個頭痛的問題, 政府部門更可能需要介入維修事宜中。

歷史建築保護

最終, 高層建築的翻新可能會因關及歷史建築保護而變得更爲 繁雜,因爲歷史建築必然有嚴密的美學參數需要遵循。保護這 類歷史建築還會引發一連串的技术難題,諸如從環境原狀的修 復到尋找那些可能已停產的物料等。盡管有着資金、運作及歷 史帶來的諸多挑戰, 建築翻新仍不失爲追求綠色、希望延長建 築生命周期、吸引租戶的業主們最爲經濟的途徑。

加拿大與海外

可持續性建築和翻新情况現狀

四座國際大都市: 紐約、新加坡、香港和多倫多, 都論證了推動高 樓翻新的關鍵因素之一乃减少碳足迹和降低能耗。建築占温室氣 體總體排放和燃油能耗總量的48%之高。9 隨着大眾意識到温室 氣體排放會影響全球氣候變化以及能源成本的增加, 政府開始 出台相關的法規政策,鼓勵業主實施可持續的翻新項目。麥格勞 希爾建築集團 (McGraw Hill Construction) 報道稱,預計到 2016年,綠色翻新項目總投入將從現有的20至40億美金躍升至 100至150億美金。目前,綠色建築在翻新改建項的市場份額只 占有5%至9%的比例。然而預計在5年內,

這一數字將增長至20%至30%。10

全球立法大環境走勢如何?

紐約

2007年10月,美國紐約市市長邁克爾 彭博 (Michael Bloomberg) 先生簽署了一項行政命令,要求截止至2017年, 市政機關的温室氣體排放量需在2006年的基礎上,降低30%; 而整體城市排放量需在2005年的基礎上,于2030年達成降低 30%的目標。"根據規划紐約 (PlaNYC) 案, 78%的温室氣體排 放與建築的供熱,供冷,用雷與照明有關。作爲長期愿景的一部

分, 這項大膽進取的計划也旨在與全球共同體携手對抗因氣候變 化而引起的嚴重后果。

美國聯邦州政府通過美國復蘇與再投資法案,承諾將投資創新清 潔能源技术, 並在2035年實現綠色能源供電產量翻倍。12 聯邦政府已意識到建築對温室氣體排放"貢獻卓越",由此引入" 更好的建築倡議"(Better Building's Initiative) 這一概念, 可使商業建築在未來10年內, 節約至少20%的能源。"更好的建 築倡議"將借助基礎設施融資手段,鼓勵翻新辦公樓、零售商店、 大學院校、醫院和商業建築。13 總統預算案中的激勵機制將使美 國的商業活動節約更多能耗,具體包括:

優惠的新節能建築稅收。

更多的商業建築翻新資金獲取渠道。

"更好的建築"挑戰,總統要求各大企業的首席執行官和各個 院校的校長們督促他們的企業在節能方面起表率作用,這可 使他們享受到諸如大眾認可、技术支持與同行最佳實踐等優 待。

培訓新一代商業建築技术人才。


- 9. Edward Mazria, Architecture2030.org
- 10. 麥格勞希爾智能報告

11. 規划紐約案 (PlaNYC): 紐約温室氣體核算體系 12 & 13. 白宮媒體事務辦公室, 新聞稿, 2011年2月3日

上圖,左: 上海天際綫,1990 ("上海天際綫漫談淺析",www.adamsmith.org);右: 上海天際綫,2013 (攝影: Oscar Tarneberg)

上圖,左: 紐約天際綫,1970;右: 紐約天際綫,2013 (攝影: Giovanni Carrieri)

上圖,左:香港天際綫,1970;右:香港天際綫,2013(http://china.luaforfood.com/why-hong-kong/skyline/)

新加坡

新加坡政府計划制定了降低碳濃度的目標,即在2012年前,單位 GDP二氧化碳排量同1990年相比,下降至25%。在新加坡,建築 消耗占約31%的用電量。如果把生活用電量考慮進去,這一數字將 攀升至49%。此外,商業和機關院校建築占全部二氧化碳排放量 的16%。14

改造現有建築是實現可持續性與節能的關鍵。新加坡新建建築在 以行的任何一年里所占的比例都十分小。基本上只占所有建築工 程中的5%。15 新加坡建設局的"翻新現有建築"報告中也指出, 新建建築不足以解决目前所面臨的問題。

政府出台的諸多激勵機制已逐漸顯現其在幫助業主及開發商們升 級現有建築,從而提高能源效率中的作用。例如"能源效率改善 援助計划","新加坡公用事業局的節水基金"和"綠色建築津貼 計划"。

可持續發展部際委員會(IMCSD)同樣制定了新加坡GDP能源密 度消减計划,即與2005年相比,2020年將達成20%的削減幅 度,2030年則達成35%的目標。這一計划爲新加坡可持續發展 藍圖的一部分。建設局在"翻新現有建築"中如此說道。

香港

香港政府承諾打造可持續發展未來。機電工程署推行了香港建 築物能源效益注册計划,這與北美地區的LEED認證類似,旨 在推廣建築物的能源效益。2009年,中央人民政府宣布綠色 减排節能目標,要求到2020年中國單位國內生產總值二氧化 碳排放比2005年下降40%-45%, 爲全球致力控制温室氣體排 放做出貢獻。16

2010年,香港政府推行了3個月的公眾咨詢策略,以制定香 港應對氣候變化條例。爲减少温室氣體排放, 政府提議確立在 2020年前, 實現碳濃度比2005年降低50%至60%的目標。 這將幫助减少香港温室氣體排放量,即從2005年的4千2百萬 噸,降低至2020年的2千8百萬噸至3千4百萬噸,約12%至 33%的减幅。17

香港政府已意識到建築是温室氣體排放的最大元凶: 90%與電 有關的温室氣體排放都與建築脫不開關系。香港中電集團與香 港政府共同協力開發相關方案及激勵機制,以鼓勵業主翻新其 建築,從而達到節能的目的。綠色加分(Green Plus)活動干 2010年起實施,旨在幫助中小企業及非政府組織實行能源效應 和能源貯存。18

香港可持續發展委員會是行政長官在香港落實可持續發展而 提出的其中一項舉措。委員會就推動可持續發展的優先範疇, 向政府提供意見,同時爲香港籌划一套融合經濟、社會和環境 因素的可持續發展策略提供意見。此外,委員會還通過不同渠 道,例如頒發獎項、增進大眾對可持續發展的認識和了解,來 鼓勵計區參與,以推動香港的可持續發展。

14 & 15. 現有建築改建,建設局

16 & 17. 「應對香港應對氣候變化策略及行動綱要」公眾咨詢文件, CLP Power Hong Kong

18. 白宮媒體事務辦公室, 新聞稿, 2011年2月3日

名倫名

多倫多建築的温室氣體排放量占全部排放量的76%,其中商業 建築和住宅建築又占了60.9%。19 2007年,多倫多市建立了 减少市內温室氣體排放框架。爲"改善空氣質量和多倫多未來 環境的可持續性"設立了以下目標:

截止于2020年,多倫多中心城區温室氣體排放量比1990 年减少30%。

截止于2050年,减少80%的温室氣體排放量。 截止于2012年,减少20%因烟霧引起的環境污染。

意識到大部分温室氣體排放是由建築造成的,多倫多市提議 爲出租式和共管式高層公寓建築籌措提高能源效益的翻新資 金。BBP-NC鼓勵業主采納更具能效的建築設計,而非僅滿足 安大略建築規範最低標准的設計。在建的商業、院校與多戶住宅 樓應符合安大略建築規範第三章的要求。

^{19.} 多倫多温室氣體和空氣污染,制定約束性策略减排

加拿大 第一廣場 **整新**

項目地址: 加拿大多倫多國王西街100號

項目規模: 3,468,610 平房英尺 | 325,150 平方米

業主: 布魯克菲爾德物業

右圖:加拿大第一廣場,東南方向延時拍攝(圖片來源: Lenscape Inc.,鳴謝布魯克菲爾德物業與EllisDon Corporation)

仍雄居加拿大最高辦公樓的 加拿大第一廣場, 正經歷着大 規模整新。2009年9月,業主 布魯克菲爾德物業 (Brookfield Properties) 與其合伙 人决定着手對其進行大規模室 內外整新。

最初于1975年完工的加拿大第一廣場曾爲高層建築的設計和建 告樹立了新標杆。項目伊始,加拿大第一廣場就頗具創新元素, 在設計、施工與工程方面都進行了許多新的嘗試。廣場爲最早的 鋼結構設計大樓之一,采用了雙層電梯轎廂與最先進工藝的機電 設施,從而保證了大量新鮮空氣的補給。B+H作爲資質建築單位 與原創設計師Edward Durell Stone先生 (1902-1978) 合作 完成工程設計和施工。竣工后已使用了35年的加拿大第一廣場 已進入生命周期的關鍵時刻,有着同時期建築所共有的老化問 題。72層大樓的全面整新涉及外墻的重新覆面,大堂與零售區域 的重新裝修和大節圍的機雷系統升級。

外墻處理十分繁雜,技术上也頗具挑戰性。大樓表面45,000塊 大理石面板被移除,取而换之的是5.600塊白色塗釉玻璃板和 古銅色玻璃板。全新閃亮玻璃幕墻使位于多倫多天際綫上至高 點的加拿大第一廣場,勾勒出城市的完美側影。

其他部分的翻新都隱蔽工程后,但却有序地進行着,包括機電系 統升級。這爲大樓在可持續性和高效運行方面引入了全新理念, 並爲租戶提供了舒適度。內部翻新包括大堂、樓梯、水景、地下 商場和零售區域。

業主方的目標之一是通過內外整新,將加拿大第一廣場塑造成加 拿大第一商業地標。布魯克菲爾德物業公司加拿大商業管理總裁 兼首席執行官Tom Farley先生表示,作爲加拿大最知名、最杰 出的大樓之一,此次整新將鞏固加拿大第一廣場的標志性地位。

項目挑戰

如何在大規模室內外整新的同時,盡量避免對租戶的干擾呢?整 新加拿大第一廣場如此高度與規模的建築的外立面是毫無先例 可循的。每一塊大理石板重達90公斤,如何安全拆除每一塊板是 十分嚴峻的挑戰。

外立面改造

爲了安全且系統有序地拆除面板,我們特意爲此項目設計了先進

可移動脚手架(圖片來源: Tom Arban)

獨特的脚手架裝置。該裝置與建築主體采用機械相連的方式, 並能按所設定的尺度部位上下移動,方便從樓頂開始依次往下 作業。

脚手架裝置為一3層樓高的懸吊提升式平台,共分14個操作區,可 容納160名工人同時作業。平均來說,80個工人3個工作日即能 移除一整層樓面的大理石面板。為減少對租戶的干擾,作業分三 個班次進行。特意將聲音嘈雜,破壞性較大的工作安排在晚班, 做到了對租戶干擾的最小化。

通常作業是從脚手架的底部作業平台開始, 先拆除外立面的大理 石板,然后依次去除密封條和石材面板的支承托架,再用推車將 拆除的面板運送至升降電梯。安裝玻璃面板則從脚手架裝置的 頂層平台開始作業。重達450千克的玻璃面板會先由垂直升降 電梯送達作業平台,再由作業平台配設的水平單軌吊索傳送到安 裝部位。

新玻璃板材的生產地就在離現場50公里的地方,這顯然减少了 碳足迹。拆除的45,000塊大理石板材也不會被作爲垃圾填埋。 我們將循環再利用每一塊板材,例如可用作混凝土,鐵軌下的道 渣,或用于景觀和計區的藝术項目。

美學考量

深度解析外立面改造

1. 提升式懸挂作業平臺

平台裝置設在建築物的四周並繞過各個轉角部位,通過緊固螺栓同建築物主體貼附。

2. 拆除大理石面板

第一步是拆除位于底層作業平台的大理石。隨后工人還需拆除密 封膠條,支承石材面板的托架,再用升降手推車將拆除的材料運 送至位于建築物東西兩側的兩部臨時施工電梯中的任一部。

3. 安裝玻璃板材

玻璃板材的安裝從頂層作業平台開始。450公斤的玻璃板材先通 過電梯運送,隨后借助單軌吊索傳送到安裝部位。

4. 下移懸挂式平臺

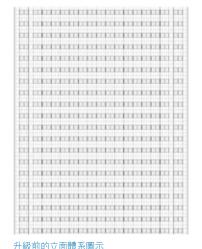
松開緊固螺栓,整體作業平台將下移一個樓面。每一步驟耗時4個工作日。

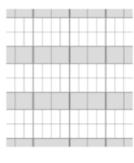
提升式懸挂平臺内景

第一層: 石材拆除與修補作業平台(圖片來源: B+H) 第二層: 石材拆除(圖片來源: B+H)

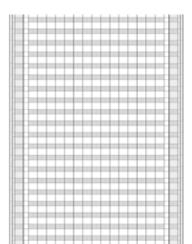
第三層:新幕墻安裝作業平台(圖片來源: B+H)

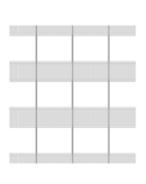
左圖: 加拿大第一廣場,采用延滯技朮攝自東南方向 (圖片來源: Lenscape Inc., 鳴謝布魯克菲爾德物業 與EllisDon Corporation)

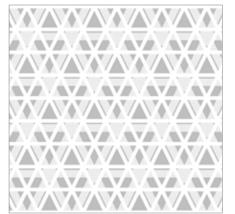


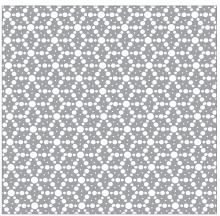


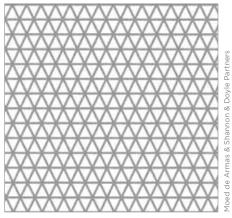
自1975年竣工以來,加拿大第一廣場就被視作是多倫多天際綫 上的至高點。其標志性的外觀經受住了時間的考驗,始終位居加 拿大最高辦公樓。保留原形象, 並進一步强化提升形象對于業主 和設計者而言都十分必要。因而設計方面的解决途徑是在尊重 Edward Durrell Stone先生原創設計的同時,嘗試新形象。由 干歲月蠶食和污染的原因,原先美麗的白色卡拉拉大理石板材已 失去其光澤。設計師們决定采用先進玻璃處理技术, 旣可復原大 理石潔白光澤,又更顯精銳挺括。凹角處采用了着色玻璃,更好地 凸顯了大樓的修長形態,使大樓擁有輕巧外觀。整體設計十分新 穎精巧,又保留了原貌的高識別度。




優化大樓運營


加拿大第一廣場翻新前表層立面放大圖 (圖片來源: B+H)


升級后的立面體系圖示


彩釉玻璃圖案效果分析

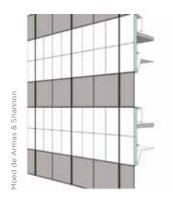
彩釉圖案效果分析: 方案 1

彩釉圖案效果分析: 方案 2

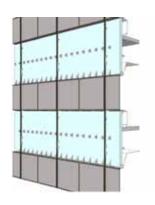
彩釉圖案效果分析: 方案 3 (最終選定方案)

整體外皮再覆面材料色彩研究: 色彩組合

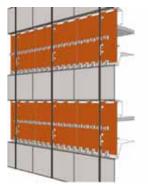
整體外皮再覆面材料色彩研究: 改變原色彩



窗下墻玻璃與鋁合金遮陽板體系



整體外皮再覆面材料色彩研究: 不銹鋼板


玻璃面板安裝

第二步: 拆除原隔熱材料

第三步: 拆除原大理石的支撑掛件

第四步: 拆除原清潔外窗用的軌道

項目目前下申請LEED現有建築運營與維護類金獎認證。認證流 程包括必要的回訪受理和基准測試。這將有助于業主和設計者 深切體驗建築的運行性能及如何提高此性能。此外,這是一個連 續的跟蹤與調整過程,要求業主承諾達成既定目標,且保持運行 性能水平。

重置建築表皮外層涉及到整修領域的多項策略, 而眾多策略均看 重優化能源利用。例如:

新型熱回收制冷機

高性能制冷機, 從現行冷却系統中回收熱量 持續預熱式家用熱水器

新型高效冷凝鍋爐

重新設計和標定感應系統

將原有通風系統采用變容風量裝置, 熱回收裝置及二氧化碳 需求裝置進行二次重組, 並優化控制和高效驅動系統

排廢熱回收

爲洗手間排風扇安裝的熱回收排廢系統 程序升級系統並獲得能源回收

電機變速驅動

電機根據工作荷載自行調節,僅需最小電量 新型照明和燈控

以降低用電量需求而采用的計費反應裝置

第五步: 修補工作

第六步: 安裝固定幕墻和新的清潔 外窗軌道用的固定樁

第七步: 安裝新隔熱材料

第八步:安裝USP幕墻和手邊構件

智能化

將智能化能源管理系統整合到設計中是達到LEED現有建築運營 及維護標准的一個基本環節,包括:

若干控制系統升級

空調設備與水泵所采用的變頻技术

辦公樓面換成DDC

辦公樓照明與設施整合納入樓宇自動化系統進行重啓和關閉

利用傳熱滯后節電

采用新型節能方案,將辦公樓層温度從24攝氏度調升至26攝氏 度, 並按安大略省發電公司要求, 在高峯時段調弱辦公區域照明 系統。由于建築規模和空調量可觀,熱滯后效果顯著,故3小時后 才能明顯感覺到温差,且該時段可供電力局蓄電節能。

立面重塑

爲了安全系統地拆除面板,我們特意爲此項目設計了先進的脚手 架系統。它與建築機械相連, 並能按比例上下移動, 方便從樓頂開 始依次往下作業。脚手架爲一3層樓高的懸吊平台, 共分14個操作 區,可容納160名工人同時作業。平均來說,80個工人3個工作日 即能移除一整個樓層的大理石面板。 為减少對租戶的干擾, 作業 分三個班次進行。特意將聲音嘈雜,破壞性較大的工作安排在晚 班,即可避免打擾到大樓租戶。通常會從脚手架平台底部開始拆 除建築立面的大理石面板,然后去除密封劑,石材和面板支撑架, 再用推車將拆除的面板運送至升降電梯。安裝玻璃面板則從脚手 架平台頂端開始。重達450千克的玻璃面板會通過升降電梯送達 脚手架平台,后由單軌索道裝運。

蓄水

高效衛生潔具: 洗手間全面安裝低流量衛生潔具。

熱回收制冷機减少了冷却塔用水量:安裝熱回收制冷機不僅節 省能源, 而且節省冷却塔的運行效率, 從而節省冷却塔冷却水 的使用。用水費用也會隨冷却塔水使用减少而降低, 這恰好可 抵扣制冷機的改造費用。

對頁: 室內翻新 加拿大第一廣場內的商場 (圖片來源: Tom Arban)

翻新工程數據統計

5,625塊塗釉玻璃面板替換原45,000塊大 理石面板

每個樓層共計有80塊玻璃面板 (原先是320 塊大理石面板)

每塊玻璃板重453公斤

每塊大理石板重90公斤

平均來說,80名工人需要3天時間即可知換

掉一整個樓層的面板

爲本項翻新定制的提升起重設備重113,000公

斤,高15米,可承載160名工人,抗風荷載按 項目總監: Kevin Stelzer

265公里/小時風速計

塗釉玻璃面板為本十就地供應

玻璃使用壽命: 100年

施工數據統計

原始施工曾采用了相當先進的建築工程技 术, 共節省130萬工時 48,7741平方米 / 120,000塊石膏板墻 將

板墻累叠起來的高度將近建築高度的8倍 當時一般的傳統施工技术,把一塊板墻叢外

部運入到建築內部需耗時6.3分鐘, 而在加拿 1973年11月

大第一廣場,只需短短1分鐘 4,400噸重的大理石面板 足以鋪設從多

倫多市政廳到達Port Credit, 長達26公里

的人行道

46,450平方米隔熱層 足以覆蓋相當于8個

足球場的面積

玻璃窗總長度達56,600英尺,約17公里

原建築工程項目建築單位

資質建築設計單位: B+H

設計顧問: Edward Durell Stone

整體翻新工程項目建築單位

資質建築設計單位: B+H

設計顧問單位: Moed de Armas & Shannon

工程項目建築師團隊

主管合伙人: Douglas Birkenshaw

項目經理: Bronwyn Sibbald

整體翻新施工咨詢團隊

施丁經理: EllisDon

結構工程師: Halcrow Yolles

工程管理工程師: Brook Van Dalen

施工前期准備工程師: Halsall Associates Ltd.

項目進度表

動丁 (原始建築)

1975年4月

低層區已投入使用

2010年11月

動工 (整體翻新)

2012年春

外墻覆面完工

對頁, 左圖: 整新前 (照片來源: Panda Associates);對頁,右圖:整新后(Artist's rendering: Moed de Armas & Shannon)

多倫多 道明中心 **翻新**

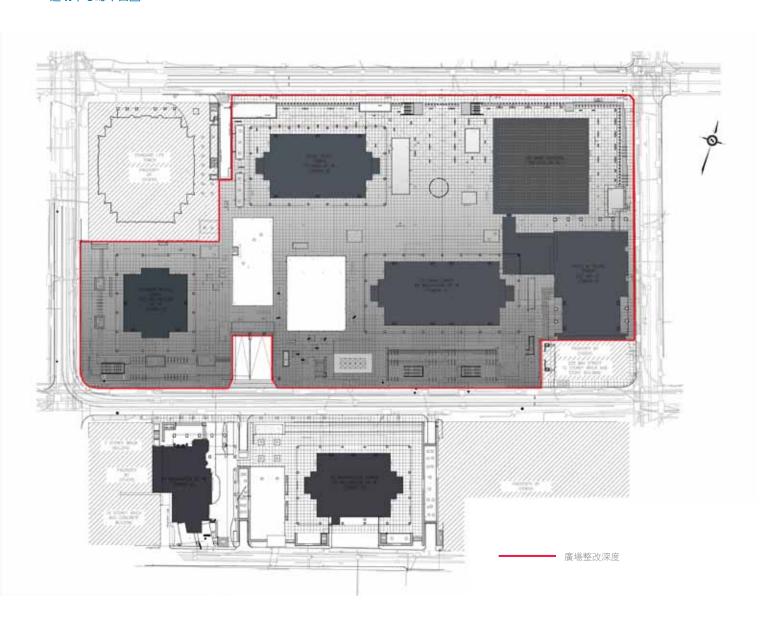
業主:卡迪拉錦綉集團項目地址:加拿大多倫多國王西街77號項目規模:1,212,610平方英尺 | 112,696平方米

右圖: 多倫多道明中心翻新 (圖片來源: Tom Arban)

......竣工后,中心將不僅僅 是地標建築,也不僅僅是上千 大眾工作的商務場所。它將帶 動周邊地區發展,成為眞正意 義上的城市中心, 爲多倫多的 商業和文化生活增添一抹亮 色,引領百年潮流。

一 摘錄自"多倫多道明中心: 開創加拿大新紀元", 由道明中心出 版于動工始建前。

多倫多道明中心由20世紀現代主義建築大師, Ludwig Mies van der Rohe先生設計,坐落于多倫多金融中心的核心地帶, 由道明銀行主席Allen Lamburt先生與錦綉集團(Fairview Corporation) 委托興建。

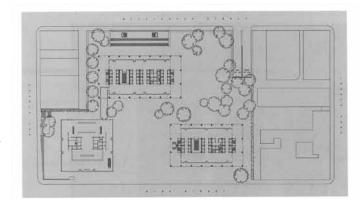

該綜合項目圍繞花崗石鋪砌的人行步道廣場布局,最初設計有3 幢高樓:分別是56層的道明銀行大樓(1967年),1層的銀行營 業廳(1969年)和46層的皇家信托大厦。道明中心是多倫多的地標 建築,是Ludwig Mies van der Rohe建築大師最具代表性的 大型項目之一,也是唯一獲"安大略遺產保護法案"(Ontario Heritage Act Designation) 指定的現代建築之一(2003 年)。這三幢建築均由Ludwig Mies van der Rohe先生原創。 偕同B+H與John B.Parkin Associates兩建築師事務所完成。

繼1968年道明中心竣工之后,第二幢高樓皇家信托大厦的施工方 式在之前的基礎上,進一步得到了改進。鋼覆面板預制拼裝在大塊 的面板上,以簡化施工,加快進度。面板有2層樓高(24英尺), 寬30至40英尺。道明中心采取的是飾面板分塊安裝,而皇家信托 大厦的預制裝配技术則是在研究了道明中心的鋼施工方式之后的演 化進步。

復興一座有生命的歷史紀念碑

考慮到道明中心是市內最具歷史意義的建築之一, 最終决定承接這 一全面翻新工程着實不輕松。2010年5月,卡迪拉錦綉集團宣布將 啟動道明中心整個項目翻新, 並先從皇家信托大厦着手進行。 隨着 將信托大厦的主要租戶遷出后,共余下17層空置樓面。錦綉集團更 借機撤換了物業, 此乃在競爭日益激烈的商業地產市場吸引租戶的 戰略之一。

道明中心總平面圖


"推行各類能提升租戶的舒適度、顯著提高建築能效的項目, 並 保持建築結構的完整性。翻新工作將集中在建築與基礎設施上, 包括機電更新及室內外重裝。"— 摘自道明中心官網

本項目最大的挑戰在于所有的改動須與Mies van der Rohe先 生的原創設計相協調。根據"安大略遺產保護法案"(Ontario Heritage Act),業主無權對被認定爲歷史建築的物業進行任何 有違其屬性的改動。20此外,業主還要求在更換窗體時,盡量不干 擾到租戶的正常活動。翻新項目包括更換現有外窗, 重飾外墻, 機電系統升級, 電梯更換及大堂與外部廣場的全面重裝。

現名爲奧斯卡彼得森廣場(Oscar Peterson Square)的翻新 則是整個翻新項目最關鍵之處。鑒于廣場存在已久, 磚石已有裂 縫, 鋪設的花崗岩步道也已磨損。因曾有過簡單補休, 故石材表 面給人以一床老破棉被的感覺。將原先完好無損的鋪地石塊替換 掉損壞的部分, 廣場下的防水層也重新鋪設。

"位于建築之間的廣場空間行行與建築本身一樣重要。"

— Ludwig Mies van der Rohe先生

右上圖: 道明中心原始平面圖 (多倫多道明中心: 開創加拿大新紀元之作); 右下圖: 自廣場視角看道明中心 (圖片來源: Tom Arban)

^{20.} 安大略遺產保護法案R.S.O. 1990, O.18章, 第4節: 保護具有文化遺產價值的物業, 文 章33.1

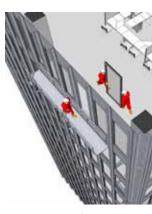
翻新的細部處理體現

爲了妥帖維護這一建築界珍品,B+H設計團隊與在歷史建築 維護領域頗有建樹的,來自E.R.A.Architects的Michael McClelland先生合作。團隊對于所有將進行的翻新改動做了 細致的安排,確保Mies van der Rohe先生的設計意圖都如實 保留,不得違背。

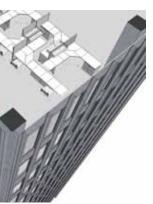
當在决定外墻塗料時,團隊特意飛去芝加哥與咨詢公司Wiss Janney Elstner Associates商計。歷時兩個月與几番的現 場實體樣板, 此時才最終確定了與原先獨特石墨色所匹配的 塗料。共計5.676扇單層玻璃窗將被更換成雙層隔熱青銅色玻 璃, 與原先的窗的顏色達成一致, 並能减少50%的熱能損失。

在翻新期間, 爲了减少對租戶的干擾, 我們竭盡全力。窗戶 的更换並非簡單地由上而下,或是由下而上,而是根據租賃情 况,系統化地按程序進行,最先處理空置的樓層與辦公空間。 更换時, 采用可容納6名工人的升降機通宵作業。家具被搬移 到空間的中間位置, 為工人留下周邊區作業。工人先將舊窗拆 除,再安裝上新的。作業完成后,家具將被恢復到原位。按每 晚16扇窗戶的更換速度,每樓層132扇窗戶,僅需一周多的時 間就可全部更換完成。

B+H設計的獨特翻新作業體系:


每班次16位工人, 每晚可更换16扇窗户

下午5點 辦公室職員結束工作,離開辦 公室


晚上7點 承建單位工作人員到達現場,爲更新做准備工作

晚上10點

左圖: 23樓 更換窗戶/家具拆卸順序 (PWC)

更換窗戶

早上5點 承建方工作人員將現場還原

早上9點 - 辦公室職員回到翻新后的辦公司

外立面改造詳解

1. 更換玻璃幕牆

所有底層以上的樓面全部更換爲雙層可回收單元 式玻璃幕墙。安裝工作都安排在晚上進行, 以免 打擾到租戶。1個班組16位工人,每班次可替換16 塊幕墻。兩位工人在升降機上作業,兩位工人在 樓層內部作業。

2. 更換空氣導管裝置

原安裝在樓板周邊的空氣導管裝置將被拆除, 取 而代之的是更爲高效的、安設在吊頂天花內的導 管。這樣,使用人可直接走近落地玻璃窗。

3. 日照控制

安裝在吊頂內的全新遮光百葉帘可以有效控制太 陽光的照射和防止眩光。

4. 熱能流失

新升級的系統將爲每延米减少50%的熱能流失。

翻新歷史珍品

建築外部僅是翻新本項目所遇到的諸多挑戰之一。被認定爲歷史建築的室內部分也需 要額外小心的細致處理。例如,爲了修補並還原現有的玻璃馬賽克頂棚,設計團隊花 了近兩個月尋找相匹配的瓷磚。由于未能找到合適的瓷磚,團隊最終决定將馬賽克頂 棚先拆下,予以清洗、抛光與修補。現有頂棚被切割成3 乘3 的尺寸,使石膏板 仍然附着于原位。隨后將這些碎片浸泡在水中一夜,並用滾轉器處理后,再由工人清 潔抛光。由于這一處理方式會破壞將近20%的面磚,故我們在摻合新的面磚后,重新 將其裝配到1 乘1 的單片上,然后再實行安裝。

大堂問詢接待台與指示牌都盡量根據先前所用物材重新設計。問詢處沿用了其花崗岩 的外形與內部結構,而只對其內部稍作了改動,以方便安設電腦,放置資料。此外, 指示牌也更新采用了觸摸屛顯示。

左上圖: 翻新前的外窗效果 (帶導風管); 右上圖: 翻新后的外窗效果 (不帶導風管全落地玻璃)

左上圖:老舊瓷磚浸泡在水中,方便之后將其從基層上剝離;右上圖:浸泡后的瓷磚塊放入轉鼓,實現 剝離; 下圖, 從左至右: 轉鼓內的瓷磚; 將清潔打磨后的瓷磚與新的瓷磚混合在一起后(補償損失部分), 放入袋中; 剥離干凈后的瓷磚從轉鼓中倒出, 放置在篩網上

"想要毀掉一個美麗空間實在是太容易了,只要引入 一些不和諧的專橫元素就足以。你能想像西格拉姆大 厦大堂設有雪茄房嗎? 我覺得我們應該讓公眾在進入 多倫多道明銀行中心大厦的那一刻,就領略到大堂整 體的美妙。"

一 摘錄自Mies van der Rohe寫給Sidney Bregman的信,表達了他對于在大堂安置一個臨時帳幕,直至 銀行營業廳下式運營的顧慮。

下圖:多倫多道明銀行中心室內翻修:盥洗室(上圖)和美食街(下圖)。對頁, 左圖: 翻修前(圖片來源: Ron Vickers Ltd. Photography);對頁,右圖: 翻新后(圖片來源: Tom Arban)

上圖: 大堂 - 翻新前(頂圖); 左下圖: 大堂 - 翻新后(底圖) 圖片來源: Tom Arban

翻新工程數據統計

每層132扇窗 X 43個樓面 = 共計5.676扇窗 一組16位工人每晚可更換16扇窗 多倫多皇家信托大厦: 600英尺 (46層) 鋼結構重量23.500噸

原工程建築項目建築單位:

主創設計師: Ludwig Mies van der Rohe (1886-

資質建築設計單位: John B. Parkin Associates 與 Bregman + Hamann Architects (B+H) - 聯合 建築單位

整體翻新工程項目建築單位:

B+H

工程建築項目建築師:

執行合伙人: Tonu Altosaar 主管合伙人: Neal Barkhurst 項目經理與合同監管(1、2號樓): Dora Yeoh 項目經理(2號樓)與合同監管(廣場): Mohsen Boctor

咨詢整體翻新施工咨詢:

結構: EXP

機電: H.H. Angus

照明設計: Gabriel McKinnon

垂直交涌: KJA

景觀: Janet Rosenberg + Associates

歷史建築保護: E.R.A.

塗料咨詢: Wiss, Janney, Elstner Associates Inc.

圍護結構咨詢: ZEC

項目進度表-最初建造

第1階段-多倫多道明中心: 加拿大多倫多惠靈頓西街66號

1964年6月

破十動工

1966年4月

結構封頂

1968年4月

多倫多道明中心正式投入運營

第2階段-銀行營業廳:

加拿大多倫多國王西街55號

1966年11月

破十動工

1968年5月

銀行營業廳投入使用

第3階段-皇家信托大廈:

加拿大多倫多國王西街77號

1966年6月

動工

1968年7月

結構封頂

1969年12月

皇家信托大厦竣工

項目進度表-翻新

第1階段-皇家信托大廈: 加拿大多倫多國王西街77號

2010年5月

多倫多道明中心翻新公告

2010年1月

最先更新皇家信托大厦玻璃幕墻

2010年10月

塗漆出樣

2011年3月

完成皇家信托大厦玻璃幕墻裝配

2011年4月

確定最終塗料

2011年5月

最先途刷皇家信托大厦

2014年

皇家信托大厦翻新完工

...... 我希望多倫多道明銀行 中心能成爲優秀建築之一。但 是如果沒有清晰明確的標准支 持,這很難實現。依我之見, 一棟建築之所以優秀, 緣于其 事無巨細,從頂端到基底所有 細部處理的積淀表現。

— 摘錄自Mies van der Rohe于1966年7月5日寫給Sidney Bregman的信

右圖: 多倫多道明銀行中心原始模型 (多倫多道明銀行中心: 開創加拿大新紀元)

我們打造有生命的建築™

多倫多·温哥華·卡爾加里·西雅圖 上海·北京·香港·新加坡 胡志明市·德里·多哈·迪拜